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SUMMARY

In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the
convergence rate of the multi-point flux approximation (MPFA) L-method by the numerical comparisons
between the MPFA O- and L-method, and show how important it is for this new method to handle
Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in
some sense can well recover the superconvergence rate of the normal velocity. In the second part of the
work, the MPFA L-method with homogeneous media is studied. A systematic concept and geometrical
interpretations of the L-method are given and illustrated, which yield more insight into the L-method.
Finally, we apply the MPFA L-method for two-phase flow in porous media on different quadrilateral grids
and compare its numerical results for the pressure and saturation with the results of the two-point flux
approximation method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Single- and multi-phase flow in porous media play an important role in many natural and industrial
fields, such as the oil industry where the flow of oil, water and gas in reservoir is studied,
or environmental engineering where flow and transport of contaminants in the subsurface are
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considered. The flow system using the fractional flow formulation contains a pressure equation with
elliptic behavior, which is linear for single-phase flow and nonlinear for multi-phase flow, see [1].

The finite volume method is a numerical discretization technique, which can locally inherit
physical conservation laws of original problems. The property of discrete local mass conservation is
desirable to approximate the elliptic operators in the pressure equation for single- and multi-phase
flow. Therefore, it is popular in the solution for multi-phase flow in reservoir simulation.

The classical cell-centered finite volume (CCFV) method is a physically intuitive control-volume
formulation using the two-point flux approximation (TPFA), which is generally used to approximate
elliptic operators in reservoir simulation. However, it is only correct if the grid directions are
aligned with the principal directions of the permeability tensor K. For general non-K-orthogonal
grids, TPFA does not work properly due to the error in its solution, which cannot be reduced by
refining the grids, see [2]. In the reservoir simulation, the grids with a high aspect ratio are quite
often used, and the grids with a more complex geometry are preferred at faults or in near-well
regions. To overcome this problem, the multi-point flux approximation (MPFA) methods were
widely studied in the last decade. It can give a correct discretization of flow equations not only
for general non-orthogonal grids but also for general orientation of the principal directions of the
permeability tensor.

There are many variants of the MPFA method (see [3]), which are deduced by different conti-
nuity conditions, the most popular of which is the O-method. In this method, the transmissibility
coefficients are calculated by requiring the pressure continuity at the midpoint of each interface
and the flux continuity at the interfaces of the cells in an interaction volume. An introduction to
the MPFA O-method for quadrilaterals can be found in [4–9]. Convergence of the O-method is
discussed in [7, 10–15]. In particular, the MPFA O-method introduced by Aavatsmark et al. [6, 7]
will be used for our numerical experiments.

Another important property for multi-phase flow is the monotonicity of the numerical elliptic
operator, which can avoid unphysical oscillations in the discrete solution. Conditions for mono-
tonicity of the MPFA on quadrilaterals are discussed in [16]. In order to improve the monotonicity
of the MPFA, a new MPFA method called the L-method was introduced for quadrilateral grids
in 2D in [17] based on the optimal monotonicity criteria derived in [16], and it was extended to
3D in [18]. The L-method requires full pressure continuity at the interfaces inside each interaction
volume, which leads to fewer cells in the flux stencils compared with the O-method, and it has the
other two main advantages: a larger domain of convergence and a larger domain of monotonicity.
Thus, in this study, we focus on the study of the new MPFA L-method for quadrilaterals in 2D.

The rest of the paper is organized as follows. In Section 2, the MPFA L-method is described
and its Dirichlet boundary handling is studied. Section 2.1 gives a brief illustration of the MPFA
L-method for a linear problem, such as the single-phase flow. The influence of different Dirichlet
boundary discretizations on the L-method is discussed in Section 2.2 by the numerical investigation
and comparisons between the MPFA O- and the L-method. Two kinds of discretization strategies
are introduced and three numerical examples are studied, which show how the implementations of
Dirichlet boundary affect the convergence rate of the pressure and the normal velocity. Section 3
presents a systematic concept and intuitive observations on the L-method with homogeneous media.
First, it is proven that the implementation of the MPFA L-method can be simplified in the case
of homogeneous media. Based on this simplification, an equivalent criterion is put forward for
choosing the proper L triangle to calculate the fluxes. The criterion is then explained from two
aspects of view through some geometrical graphs. Some theorems and corollaries are concluded,
and the interpretation for the results of one of the numerical experiments in Section 2.2.3 is shown.
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In Section 4, numerical experiments for a simplified two-phase flow problem are implemented
using the MPFA L-method on general quadrilateral grids. Simulation results for the pressure and
saturation are given and are also compared with the results of the TPFA method. Finally, some
conclusions are given in Section 5. The implementation is performed within the multi-scale multi-
physics toolbox DuMux [19], which is based on the recently released DUNE framework [20]. The
resulting linear systems are solved by the sparse direct solver PARDISO [21].

2. THE MPFA L-METHOD

The main work of the MPFA L-method is to calculate the fluxes through all the cell edges. Obvi-
ously, the flux through the each cell edge on the Neumann boundary can be directly given by
Neumann boundary conditions. However, for the Dirichlet boundary, different boundary discretiza-
tions can be used, which have different influences on the convergence rate of the L-method. In the
following two subsections, a brief description of the L-method is given, and the influence of the
Dirichlet boundary discretization on the L-method is studied.

2.1. Description of the MPFA L-method

We consider the second-order elliptic equation in 2D

−∇ ·(K∇ p)=q in �∈R2 (1)

where K is the conductivity tensor and is assumed to be symmetric and positive definite. In the
context of reservoir simulation, problem (1) is the pressure equation for single-phase steady flow
in porous media. Correspondingly, K is the ratio of the intrinsic permeability tensor and the fluid
viscosity, and p represents the pressure. The MPFA L-method for Equation (1) on a quadrilateral
grid was first introduced and well described in [17]. For completeness, here, we shortly illustrate
the L-method on a quadrilateral grid in the following three steps:

(i) Choose a proper L triangle, as shown in Figure 1, either L triangle 1 or L triangle 2 to
calculate the transmissibility coefficients t ji of a half edge, such as the top half edge x̄1 x̄3
between cell 1 and cell 2 in Figure 1. Here, L triangle 1 and L triangle 2 are shortly denoted
as T1 and T2, respectively; j =1,2 indicate that T j is applied in the computation; i is the
cell index, as shown in the figure, i=1, . . . ,4; xi , i=1, . . . ,4 are cell centers; x̄k,k=1,2
are midpoints of the edges; and x̄3 is the common corner of the four cells. Let the pressure
value at cell center xi be pi , and the pressure values at x̄k,k=1,2,3 are denoted by p̄k . In
each of the three subcells of an L triangle, for example in T1, which are the quadrilateral
x1 x̄1 x̄3 x̄2,�x̄1x2 x̄3 and �x̄2x3 x̄3, linear pressure functions are applied. The pressure values
p̄k,k=1,2,3 can be eliminated in the expression of the flux through each half edge by
the two continuity conditions: (a) full pressure continuity, (b) flux continuity at the two
interfaces (such as, in T1, x̄1 x̄3 and x̄2 x̄3) inside a L triangle. Finally, the flux through each
half edge can be explicitly expressed by the linear combination of the pressures at the three
cell centers, which forms the L triangle with the transmissibility coefficients; that is, for
T1, f = t11 p1+ t12 p2+ t13 p3, and for T2, f = t21 p1+ t22 p2+ t24 p4. For the detailed deduction
of the flux expression, see [17]. The criterion for choosing the proper L triangle is: if
|t11 |<|t22 |, choose T1; otherwise, choose T2.
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Figure 1. L triangle 1 (T1, left) and L triangle 2 (T2, right) for the MPFA L-method.

(ii) Use the procedure in (i) to calculate the fluxes f 11 and f 21 through two half edges, then the
flux f1 through an entire edge is obtained by the sum f 11 + f 21 . Similar to the other three
edges of a cell K ∈T, T is the partition of the computational domain �.

(iii) Insert the four flux expressions derived in (ii) into the local control-volume formulations
f1+ f2+ f3+ f4=∫K q dx for all cells K ∈T; the discretization of the MPFA L-method
is derived.

For 2D, instead of defining pressure continuity points at interfaces in the O-method (see [6, 7]),
the L-method requires full pressure continuity at the interfaces inside each interaction volume.
It means that only three subcells and two half edges are applied to calculate the transmissibility
coefficients for each half edge, whereas four subcells and four half edges are used in the O-method.
As mentioned in [17], for homogeneous media and uniform grids, the adaption of the L-method
leads to four-point flux stencils for each entire edge and seven-point cell stencils, instead of six-
point flux stencils and nine-point cell stencils in the O-method. In fact, the L-method has a better
feeling about the direction of the anisotropic tensor than the O-method.

2.2. The influence of the Dirichlet boundary discretization on the MPFA L-method

In this subsection, two kinds of discretization strategies are first introduced for the Dirichlet
boundary of the L-method. A numerical investigation between the O- and L-method is then studied
to show how important it is for the L-method to handle the Dirichlet boundary implementation in
a suitable way. Hence, in the following subsubsections, we only consider the elliptic problem (1)
with a homogeneous Dirichlet boundary condition

p=0 on �D=�� (2)

and a homogeneous permeability tensor K as our numerical example.
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2.2.1. Dirichlet boundary discretizations of the L-method. The first kind of Dirichlet boundary
discretization is originally mentioned in [12, 17], which combines the L-method with the O-method
to handle Dirichlet boundary conditions. Thus, we denote this boundary strategy as ‘L+O’, and
correspondingly, the L-method is denoted as ‘MPFA L: L+O’. In detail, for all Dirichlet boundary
edges, such as x5 x̄2 and x6 x̄2 in Figure 2 (left) and every second half interior edge connected with
the Dirichlet boundary such as x̄2 x̄3 in Figure 2 (left), the O-method is applied in the interaction
volume covering the Dirichlet boundary such as the quadrilateral x1x2x6x5 in Figure 2 (left)
to calculate the fluxes, for the detailed flux computation, see [12]. Meanwhile, for every first
half interior edge near the Dirichlet boundary such as x̄1 x̄3 in Figure 2 (left), the L-method is
implemented to calculate the flux f 11 using either �x1x2x3 or �x1x2x4.

Based on the first boundary strategy, we propose the second kind of Dirichlet boundary discretiza-
tion, which applies the O-method for both the first and second half interior edges connected with
the Dirichlet boundary. For example, in Figure 2 (right), the interaction volume x1x2x4x3 is used to
calculate the flux f 11 through the first half edge x̄1 x̄3, whereas the interaction volume x1x2x6x5 is
used to calculate the flux f 21 through the second half edge x̄2 x̄3. This boundary strategy is denoted
as ‘full O’, and correspondingly, the L-method is denoted as ‘MPFA L: full O’.

2.2.2. Rectangular grid with mild anisotropy. As the first numerical example, we consider q=
48x(1−x)−16(1−2x)(1−2y)+48y(1− y) and a mild anisotropy K:

K=
(
1.5 0.5

0.5 1.5

)
(3)

on a rectangular grid, which has the exact solution p=16x(1−x)y(1− y). Since the tensor K is
symmetric, the principal directions are orthogonal. It is easy to see that the two principal directions
of the anisotropic full tensor (3) are k1=(1,1)T,k2=(1,−1)T as shown in Figure 3(a), which are
not aligned with the rectangular grid directions. Thus, for this tensor K, the rectangular grid is a
non-K-orthogonal grid.

Numerical results for the MPFA O-method and L-method on the rectangular grid (see Figure 4
(left)) are shown from the refinement level 1–5. Here, the refinement level of the initial grid is
level 0, and the next finer grid on level 1 is constructed by halving all the cells of the initial grid
in both the x- and y-direction. Similarly, the grids on level 2,3, . . . can be obtained successively.

Initially, we implement the ‘MPFA L: L+O’ method and find out that its convergence rate
of the normal velocity is O(h1.5), which loses O(h0.5) in comparison with the O-method, see

Figure 2. Dirichlet boundary discretizations: ‘MPFA L: L+O’ (left); ‘MPFA L: full O’ (right).
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(a) (b) (c)

Figure 3. Grid cell with principal directions of the permeability tensor K.

Figure 4. Rectangular grid (left, level 0), local relative error graph for normal
velocity of O-method (right, level 4).

Figure 7 (right). In all the convergence-order graphs, n=1/hmax, where ‘hmax’ is the maximum
of the diameters of all cells. ‘e’ represents the relative discrete L2 norm of the error either for the
pressure defined by the expression

ep =
(∑

K∈T |K |(pex,K − pK )2∑
K∈T |K |p2ex,K

)1/2

(4)

or for the normal velocity defined by

ev =
(∑

K∈T
∑

j∈�K |K |( fex, j − f j )2∑
K∈T

∑
j∈�K |K | f 2ex, j

)1/2

(5)

Here, the analytical pressure value pex,K is evaluated at the cell center of K , pK is the discrete
solution of the pressure at the cell center and |K | is the area of the cell K . The analytical normal
velocity fex, j is evaluated by −K∇ p ·n at the midpoint of the cell edge j , where n is the unit
outer normal of j . f j is the discrete normal velocity calculated at the cell edge center.

Figure 4 (right) and Figure 5 (left) show the local relative error for the normal velocity. It
can be seen that the ‘L+O’ strategy gives a much bigger error for the normal velocity on the
Dirichlet boundary layer with the magnitude 10−8 compared with the error magnitude 10−10 for
the O-method. If we calculate the error for the pressure and the normal velocity only using the
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Figure 5. Local relative error graph for normal velocity of L-method: ‘L+O’
(left, level 4) and ‘full O’ (right, level 4).
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Figure 6. Convergence-order graph on rectangular grid with ‘MPFA L: L+O’ boundary discretization:
pressure (left), normal velocity (right).

interior cells inside the computational domain, from Figure 6 it is easy to see that the convergence
rate of the normal velocity increases to O(h2) instead of O(h1.5) for the whole domain. But for
the pressure, the Dirichlet boundary layer only has a weak influence on the convergence.

Based on the above observation, it motivates us to improve the numerical computation of
the Dirichlet boundary cells in the L-method. Therefore, the second kind of Dirichlet boundary
discretization mentioned in Section 2.2.1 is introduced in terms of the properties needed by the
superconvergence. Figure 7 shows the discrete L2 convergence behavior of the solution to the
problem (1) and (2) using the MPFA O-method, ‘L+O’ and ‘full O’ strategy of the L-method.
Obviously, the superconvergence rate of the normal velocity is successfully recovered to O(h2)
by applying the improved boundary performance ‘full O’. By the local error graph for the normal
velocity in Figure 5 (right), it can also be seen that the big boundary error is well reduced to the
same magnitude 10−10 as in the O-method. Meanwhile, Figure 7 (left) shows that the convergence
order for the pressure is O(h2) for all the three numerical methods, which indicates that the
boundary implementation of the L-method does not affect the pressure much.
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Figure 7. Convergence-order graph on rectangular grid: pressure (left), normal velocity (right).

2.2.3. Quadrilateral grid with isotropy. Furthermore, the numerical example with q=32x(1−
x)+32y(1− y) and isotropy K:

K=I=
(
1.0 0.0

0.0 1.0

)
(6)

is simulated on a quadrilateral grid shown in Figure 9 (left), which has the exact solution p=
16x(1−x)y(1− y). Obviously, the two principal directions of the isotropic tensor (6) are parallel
with the x- and y-axis as shown in Figure 3(b). However, they are not aligned with the quadrilateral
grid directions. Hence, it is still a non-K-orthogonal grid.

Figure 8 shows the comparison results of the convergence rate for the pressure and the normal
velocity, it can be observed that the O-method still gives good results with O(h2). The orders
of the pressure and the normal velocity for the ‘MPFA L: L+O’ method are almost the same
as those for the ‘MPFA L: full O’ method, which still show the superconvergence with O(h1.9)
and O(h1.5), respectively; however, they are reduced. This can be explained by Figure 9 (right)
and Figure 10 which show the local relative error for the normal velocity of the three numerical
strategies. It is obvious that the O-method still exhibits small errors for the whole domain with the
biggest magnitude 10−10, whereas ‘L+O’ and ‘full O’ are both with the biggest magnitude 10−7,
which is larger than the O-method. Note that in this case, the ‘full O’ boundary discretization does
not improve the error for the normal velocity due to the relatively big errors inside the domain
where the grid has a bad behavior. Hence, the Dirichlet boundary influence can be ignored for this
case compared with the interior errors. The reason for the occurrence of the big errors inside the
domain for the L-method is described later in Section 3.4.

2.2.4. General quadrilateral grid with mild anisotropy. In fact, the above two numerical examples
are special cases of the non-K-orthogonal grid. The first example is tested on a very special grid,
which aligns with the x- and y-axis but with a full tensor K; and the second example is set up with a
very special tensor, which aligns with the x- and y-axis but is solved on a non-orthogonal grid. For
completeness, we also show the numerical example on a much more general quadrilateral grid with
a general permeability tensor, see Figure 3(c). Hence, the simulation results of the same numerical
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Figure 8. Convergence-order graph on quadrilateral grid: pressure (left), normal velocity (right).

Figure 9. Quadrilateral grid (left, level 0), local relative error graph for normal
velocity of O-method (right, level 3).

example on a general quadrilateral grid (see Figure 11 (left)) as the one on the rectangular grid
are given in this subsubsection.

From Figure 11 (right) and Figure 12, it can be seen that in this general case, the O-method has
the same magnitude 10−8 of the biggest error as the L-method with both boundary discretizations.
Nevertheless, the L-method has bigger errors than the O-method in some local regions, where
the grid has a bad behavior. Moreover, the boundary influence near the left-top corner of the
domain occurring in the ‘MPFA L: L+O’ method is eliminated by applying the new boundary
discretization ‘full O’, and the error values are also decreased. These observations are helpful to
understand how the convergence-order graphs should look like.

As shown in Figure 13 (right), the convergence rate for the normal velocity of the ‘MPFA L:
L+O’ method is O(h1.6) rather than O(h2) for the O-method due to the big errors in some local
regions. After using the improved boundary strategy ‘full O’, the convergence order is slightly
increased to O(h1.7). As the above two numerical examples, the convergence behaviors of the
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Figure 10. Local relative error graph for normal velocity of ‘L-method: L+O’
(left, level 3) and ‘full O’ (right, level 3).

Figure 11. General quadrilateral grid (left, level 0), local relative error graph for
normal velocity of O-method (right, level 4).

Figure 12. Local relative error graph for normal velocity of ‘L-method: L+O’
(left, level 4) and ‘full O’ (right, level 4).
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Figure 13. Convergence-order graph on general quadrilateral grid: pressure (left), normal velocity (right).

pressure are similar for all the three methods, which all achieve O(h2) order as illustrated in
Figure 13 (left).

In fact, the new method ‘MPFA L: full O’ is introduced here to improve the convergence of the
normal velocity by reducing the boundary error. However, it cannot deal with the big errors coming
from the shape of the grid. Therefore, the efficiency of the improvement differs from different
grids. For some cases, the ‘full O’ strategy can completely recover the superconvergence order
of the normal velocity, such as the numerical example shown in Section 2.2.2; for some cases, it
does not make any sense since the boundary error is not the main contribution to the convergence
behavior, see Section 2.2.3; for the other cases, it works in between, i.e. the convergence rate is
increased somehow but not that much, refer to the general case in Section 2.2.4. As a conclusion,
compared with the O-method, the superconvergence behavior of the L-method depends in a more
sensitive way on the Dirichlet boundary handling and on the shape of the grid.

3. THE MPFA L-METHOD WITH HOMOGENEOUS MEDIA

Throughout this section, we assume that the tensor K is homogeneous in the computational domain
�. All the theoretical results and explanations on the MPFA L-method here are discussed and
given based on this assumption.

3.1. The simplified MPFA L-method

First, Lemma 3.1 is stated and proven to show that the implementation of the L-method can be
significantly simplified for the homogeneous media.

Lemma 3.1
Under the assumption that K is homogeneous on �, the computation of the L-method described
in Section 2.1(i) can be simplified as: the flux f through each half edge e (see Figure 14 (left))
is given as f =−K∇ p ·ne, where ne is the scaled normal vector on e, having the same length as
e; p is a linear pressure function uniquely given by the values at the three different cell centers
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Figure 14. Simplified L triangle 1 (ST1) and simplified L triangle 2 (ST2) (left) for the simplified L-method,
original L triangle 2 (T2, right).

of either the simplified L triangle 1 or the simplified L triangle 2 in Figure 14 (left), which are in
short denoted as ST1 and ST2, respectively; and

∇ p=

⎧⎪⎪⎨
⎪⎪⎩

− 1

2F1
[(p2− p1)�2+(p3− p1)�3] ST1 is chosen

− 1

2F2
[(p1− p2)�1+(p4− p2)�4] ST2 is chosen

Here, F1 and F2 are the areas of ST1 and ST2, �i (i=1, . . . ,4) are the normal vectors having the
same lengths as the edges they are normal to.

Proof
It is enough to prove that the jump [∇ p] is zero on the half edge e1 and e2 of the original L triangle
T2 in Figure 14 (right). As shown in the figure, ne1 and te1 are the unit normal and tangential
vectors of e1. Since the L-method requires full pressure continuity and flux continuity on e1, and
K is symmetric and homogeneous on �, hence

[∇ p ·te1]=0, [K∇ p ·ne1]=[∇ p ·KTne1]=[∇ p ·Kne1]=0 (7)

Using the fact that K is positive definite, it is easy to see that te1 and Kne1 are independent, thus
[∇ p]|e1 =0. Similarly, we have [∇ p]|e2 =0. Hence, ∇ p is constant on T2 and the desired result
follows. �

3.2. The explanation on the criterion for choosing the L triangle

In this subsection, the criterion for choosing the L triangle introduced in [17] is reinterpreted in
a more intuitive way. An equivalent criterion is put forward, which yields more insight into the
L-method.

Note that the two choices of the L triangle related to the half edge x̄1 x̄3 in Figure 1 are T1
and T2, and ne denotes the scaled normal vector on the half edge x̄1 x̄3, having the same length as
x̄1 x̄3. From Lemma 3.1, it is obvious that the flux f through the half edge x̄1 x̄3 can be calculated
by the simplified L triangle shown in Figure 14 (left), either ST1 or ST2, which are �x1x2x3 or
�x1x2x4, respectively.

Given ST1,ST2 and KTne, as shown in Figure 15, we can draw the line segment x1x ′
1 through

the point x1 along the direction of KTne, which intersects with the edge x2x3 at the point x ′
1 and
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has the length l1. Similarly, the line segment x2x ′
2 is drawn along the direction of KTne with the

length l2. Here, the pressure values at the point x ′
1 and x ′

2 are denoted as p′
1 and p′

2, respectively.

Lemma 3.2
Let the expressions of the flux f through the half edge x̄1 x̄3 calculated from both L triangles (T1
and T2 or ST1 and ST2) be

f =
⎧⎨
⎩
t11 p1+ t12 p2+ t13 p3 from T1 or ST1

t21 p1+ t22 p2+ t24 p4 from T2 or ST2

(8)

as described in the first step (i) of the L-method in Section 2.1. Then the criterion originally
introduced in [17] for choosing the proper L triangle{

if |t11 |<|t22 | choose T1

otherwise choose T2

(9)

is equivalent to the following criterion:{
if l1>l2 choose T1 or ST1

otherwise choose T2 or ST2
(10)

Proof
From (8), we have

−K∇ p ·ne=
{
t11 p1+ t12 p2+ t13 p3 from T1 or ST1

t21 p1+ t22 p2+ t24 p4 from T2 or ST2

(11)

On the other hand, in terms of the construction of x1x ′
1 and x2x ′

2, we let

x1−x ′
1=�1KTne, x2−x ′

2=�2KTne

Figure 15. Explanation on the criterion for choosing the L triangle.
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where �1 and �2 are two constant scaling factors. Thus,

l1=|�1||KTne|, l2=|�2||KTne| (12)

Since ∇ p ·KTne is the gradient of p along the direction of KTne, we have

−K∇ p ·ne=−∇ p ·KTne=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p′
1− p1

�1|KTne| from ST1

p′
2− p2

�2|KTne| from ST2

(13)

Note that in Figure 15, p′
1 only depends on p2 and p3, and p′

2 only depends on p1 and p4 according
to Lemma 3.1, so comparing (11) with (13) we obtain

t11 =− 1

�1|KTne| , t22 =− 1

�2|KTne|
Combining with (12), it is easy to obtain

|t11 |= 1

l1
, |t22 |= 1

l2
(14)

From (14), it is obvious that the criterion (9) is equivalent to the criterion (10), which gives an
intuitive description of the original principle for choosing the L triangle. �

Remark
Lemma 3.2 is derived only for the special case with homogeneous media, and it is difficult to
abstract the equivalent criterion for the heterogeneous case due to the different K values for the
two choices of the L triangle. Nevertheless, the same principle should work for the general case
with heterogeneous permeability tensor.

Based on Lemma 3.2, the choice range of two L triangles is illustrated below from two points
of view, and the two picture descriptions are useful and explicit for getting a good understanding
of the L-method.

3.2.1. Illustration 1. We start by assuming that the simplified L triangle ST1 for a half edge e
and the vector KTne with length l1 are given as shown in Figure 16. Now we want to find out in
which part of the plane the center point x4 can be placed, such that the simplified L triangle ST1
is chosen in terms of the criterion (9); in the other part, the L triangle ST2 formed by points x1, x2
and x4 is chosen. Here, ne is the scaled normal vector on e as defined before, xi , i=1, . . . ,4 are
the cell centers.

Referring to the equivalence between criterion (9) and (10) in Lemma 3.2, we can simply draw
a line segment with the length l1 starting from the point x2 in the direction of the vector KTne,
which ends at the point x ′

2, see Figure 17. In a similar way but in the opposite direction of KTne,
the line segment x2x ′′

2 is drawn. Finally, the straight line through points x1, x ′
2 and another line
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Figure 16. Given the simplified L triangle ST1 and the vector KTne.

Figure 17. The two regions for the unknown point x4.

through points x1, x ′′
2 can be determined. Here, the shadowed region bounded by the lines x1x ′

2 and

x1x ′′
2 is denoted as Region 1, which excludes x1x ′

2 and x1x ′′
2 , and the remaining part is Region 2.

Obviously, according to the equivalent criterion (10), we have

point x4 locates in

{
Region 1: l1>l2 choose L triangle ST1

Region 2: l1�l2 choose L triangle ST2

(15)

Remark
Actually, for the L-method, it is only possible for the point x4 to be on the same side as the point
x3, i.e. above the straight line x1x2 in Figure 17. Therefore, (15) can be rewritten as

point x4 locates in

{
Region 1 above x1x2: l1>l2 choose L triangle ST1

Region 2 above x1x2: l1�l2 choose L triangle ST2

(16)

3.2.2. Illustration 2. Given the simplified L triangles ST1 and ST2 for a half edge e as shown
in Figure 18, we want to find out two direction ranges of the vector KTne. In one range, the L
triangle ST1 is chosen, and in the other range, the L triangle ST2 is chosen. Here, ne is the scaled
normal vector on e as defined before, xi , i=1, . . . ,4 are the cell centers.
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Figure 18. Given the simplified L triangles ST1 and ST2.

Figure 19. Three critical lines for the direction of KTne.

Applying the equivalent criterion (10), the direction regions of KTne can be obtained in three
steps as illustrated in Figures 19–21:

(1) Initially, it is obvious to observe three critical directions for the vector KTne as shown in
Figure 19: (i) the straight line through the points x1 and x2 along which we have l1= l2;
(ii) the line connecting x1 and x4 with l2=∞; (iii) the straight line through the point x1 in
parallel with the line segment x2x3. Along this direction, l1=∞.

(2) Although the above three critical lines have been found, there is still one more with the
relation l1= l2 missing. To search for it, a parallelogram is constructed as given in Figure 20.
Based on the intersection triangle �x1x2xc of ST1 and ST2, a parallelogram x1x2x ′

2x
′
1 can

be easily constructed using the length of x1xc and x2xc. Obviously, the line segments x1x ′
1

and x2x ′
2 are parallel and have the same length. Thus, if the direction of KTne is along the

line x1x ′
1, then l1= l2, which gives the fourth critical line.

(3) Combining steps (1) and (2) in one figure, we find all four straight lines with critical
directions for KTne. From Figure 21, it is easy to conclude that

the direction of KTne is in

{
Region 1: l1>l2 choose L triangle ST1

Region 2: l1�l2 choose L triangle ST2

(17)
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Figure 20. A parallelogram to search for the fourth critical direction.

Figure 21. Two choice regions for the direction of KTne.

3.3. The combination of the two L triangles for an entire cell edge

Theorem 3.1
As shown in Figure 22, xi , i=1, . . . ,6, are the cell centers. �x1x2x3 and �x1x2x4 in the right
picture are the two simplified L triangles corresponding to the first half edge e1 of one cell
edge, which are shortly denoted as ST1 and ST2, respectively. �x1x2x5 and �x1x2x6 are the two
simplified L triangles corresponding to the second half edge e2 of the cell edge, which are shortly
denoted as ST4 and ST3, respectively. If the polygon constructed by the points xi , i=1, . . . ,6, is
a parallelogram, i.e. it can be expressed as x3x4x6x5, then

(1) the combination choice of the two simplified L triangles for e1 and e2 is either (ST1,ST3)
or (ST2,ST4);

(2) correspondingly, the choice of the two original L triangles shown in Figure 22 (left) for e1
and e2 is either (T1,T3) or (T2,T4).

Proof
(1) We show that if ST1 is taken, then the choice ST4 is impossible, and if ST2 is selected, then ST3
is impossible. Referring to the Illustration 2 for the region for the direction of KTne in Figure 21,
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Figure 22. Four L triangles for a cell edge: original L (left), simplified L (right).

Figure 23. Direction region of KTne for choosing: ST1 (left), ST3 (right).

it is easy to find Region 1 for KTne in which the simplified L triangle ST1 is chosen for the first
half edge e1 as shown in Figure 23 (left). Similarly, Region 1′ is obtained for the second half
edge e2 in which ST3 is chosen, see Figure 23 (right). Since the polygon constructed by the points
xi , i=1, . . . ,6, is a parallelogram; hence, the line through the points x3 and x5 is parallel with
the one through points x4 and x6. Therefore, Region 1 is the same as Region 1′. In other words,
if the vector KTne points in the direction within Region 1, then the combination (ST1,ST3) is
chosen for the entire cell edge in terms of the original criterion (9); in the rest of the plane, the
combination (ST2,ST4) is used to calculate the flux.

(2) It follows from the above result and Lemma 3.1. �

Corollary 3.1 (Extension of Theorem 3.1)
As seen from Figure 24, �x1x2x3 and �x1x2x4 are the two simplified L triangles corresponding
to the first half edge e1 of one cell edge, which are shortly denoted as ST1 and ST2, respectively.
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Figure 24. Four simplified L triangles with two constructed parallelograms.

�x1x2x5 and �x1x2x6 are the two simplified L triangles corresponding to the second half edge
e2 of the cell edge, which are shortly denoted as ST4 and ST3, respectively. Obviously, �x1x2xc1
is the intersection triangle of ST1 and ST2, and �x1x2xc2 is the intersection triangle of ST3 and
ST4. Using these two intersection triangles, one can construct two parallelograms x1x2x ′

2x
′
1 and

x1x2x ′′
2 x

′′
1 in the same way as described in Figure 20. If the two artificial parallelograms can form

a whole parallelogram x ′
1x

′
2x

′′
2 x

′′
1 as shown in Figure 24, then the two conclusions in Theorem 3.1

also hold.

Corollary 3.2
In Figure 25 (left), given the simplified L triangles ST1 (�x1x2x3) and ST2 (�x1x2x4) for the first
half edge e1 of one cell edge, and ST3 (�x1x2x6) and ST4 (�x1x2x5) for the second half edge e2.
Parallelograms x1x2x ′

2x
′
1 and x1x2x ′′

2 x
′′
1 are constructed by the intersection triangle �x1x2xc1 and

�x1x2xc2 , respectively. When the two artificial parallelograms cannot form a whole parallelogram
as shown in Figure 25, then there exists a region in which if the vectorKTne locates, the combination
choice of the two simplified L triangles for e1 and e2 is either (ST1,ST4) or (ST2,ST3).

Proof
It can be easily proven by referring to Illustration 2 of the criterion in Figure 21. As shown in
Figure 25 (right), the critical lines with l1= l2 have been found for e1 and e2. Based on this, the
shadowed region is obtained in which if KTne locates, the choice of the simplified L triangle for
e1 is ST2, whereas for e2, ST3 is chosen. That is, the choice of the simplified L triangles for the
cell edge here is the combination (ST2,ST3). �

Remark
From Theorem 3.1, Corollaries 3.1 and 3.2, it can be concluded that in the case of homogeneous
media, for uniform grids, the choice of the simplified L triangles for one cell edge is always the
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Figure 25. Example for choosing the combination (ST2,ST3).

combination (ST1,ST3) or (ST2,ST4); but for distorted grids, it depends on the shape of the grid
and the permeability tensor K.

3.4. Discussion

Now, let us reconsider the numerical results of the problem in Section 2.2.3 with the isotropic,
homogeneous K (6). Based on the above theoretical results and explanations on the L-method,
under the assumption of a homogeneous permeability tensor, we will interpret why there are some
big errors for the normal velocity appearing in the interior domain as shown in Figure 10.

Figure 26 shows part of the quadrilateral grid in Figure 9 (left) with bad behavior. Here, xi , i=
1, . . . ,10, are the cell centers, and x̄ j , j =1, . . . ,5, are the cell nodes. SinceK is homogeneous in this
case; hence, all the theoretical results proposed in Section 3 can be applied for our discussion here.

According to Lemma 3.1, the flux through each cell edge can be equivalently calculated by the
simplified L triangles. Thus, we intend to find out the two proper simplified L triangles for the
calculation of the fluxes through the cell edge x̄1 x̄2 and x̄4 x̄5. Note that K is an identity matrix,
so KTne=ne, where ne is the scaled normal vector on a cell edge e. Therefore, it is easy to draw
the vector KTne of x̄1 x̄2 and x̄4 x̄5, see Figure 26.

First, for the cell edge x̄1 x̄2, since the direction of its KTne is parallel with the critical line
x1x2 along which l1= l2; hence, the combination (ST2,ST4) is chosen in terms of the equivalent
criterion (10), i.e. (�x1x2x4, �x1x2x5). It can be observed that the quadrilateral x1x4x2x5 used for
calculating the flux only covers the cell edge x̄2 x̄3 instead of x̄1 x̄2, which causes the ‘information
shift’ for the flux calculation, and thus big errors on these parts of the grid occur.

For the cell edge x̄4 x̄5, it can be seen that the vector KTne locates in Region 1 for both half
edges of x̄4 x̄5. Hence, the combination of the two simplified L triangles for x̄4 x̄5 is (ST1,ST3)
according to (17), i.e. (�x7x8x1, �x7x8x10). Notice that the quadrilateral x7x1x8x10 symmetrically
covers the inner part of the cell edge x̄4 x̄5, thus it can well provide the data information for the
flux calculation. Obviously, the phenomenon of ‘information shift’ does not occur in this case.

From the above discussion and analysis for the two different kinds of cell edges, it can be
expected that the big errors only appear in the vertical direction of the bad-behavior grid part. This
is confirmed by our numerical experiments, see Figure 10.
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Figure 26. Part of the quadrilateral grid in Figure 9 (left) with bad behavior.

Remarks
As mentioned in [17], the L-method was developed to improve the monotonicity of the O-method
on challenging grids and/or strong medium anisotropy. For severe grid aspect ratios and rough grid
perturbations, large oscillations may occur in the pressure for the O-method, which can deteriorate
its convergence behavior. The results in Section 2 show that the L-method performs not so good
as the O-method in the aspect of convergence rate, such as for the example in Section 2.2.3.
However, these two observations are not contradictory. First of all, the grid in Figure 9 (left) only
has a moderate grid aspect ratio without the rough grid perturbation, and in this case only small
oscillations may be seen for the O-method even if its monotonicity is violated, see [17]. Thus, the
monotonicity may not affect the convergence rate of the O-method; in other words, both methods
have almost the same competence for the monotonicity. Second, a large domain of monotonicity
does not necessarily lead to a high convergence rate. For the grid in Figure 9 (left), the ‘information
shift’ for the flux calculation mentioned above acts as a more important role for the convergence
rate of the L-method compared with the monotonicity for the O-method. Therefore, the grid shape
and the permeability tensor can influence the convergence rate of both methods but from different
points of view, i.e. the monotonicity for the O-method and the choice of the L triangles for the
L-method.

Although the monotonicity of the L-method is improved compared with the O-method as shown
in [17], the convergence rate for the L-method can be worse than for the O-method. This fact can
be explained by the observed ‘information shift’ illustrated in Figure 26. Notice that regardless of
the combination of the L triangles that is chosen, the ‘information shift’ will always exist, which
becomes a weak point of the L-method. In other words, it does not depend on the criterion for
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choosing the L triangles but on the shape of the grid. There might be several possibilities to alleviate
the problem such as: (i) grid adaptivity and (ii) the moving node method. Both possibilities first
check if the quality of the grid is good enough for the implementation of the L-method before
computation, then (i) performs the grid refinement to improve the grid behavior while (ii) changes
the local grid shape by moving the existing nodes. (iii) The third possibility is to use a fictitious
grid in the local region where the grid behavior is bad for the more exact calculation of the flux.
All the remedies we can think of so far are rather artificial and might work in one special case but
not in the next one.

4. THE MPFA L-METHOD FOR TWO-PHASE FLOW

In this section, the MPFA L-method is applied to simulate a simplified two-phase flow model—the
Buckley–Leverett (BL) problem in porous media on general quadrilateral grids. Here, only the
‘L+O’ boundary strategy is implemented. Numerical results using the L-method are given for
both the pressure and the saturation and are also compared with the simulation results using the
TPFA. In order to apply the L-method, the fractional flow formulation (18) and (19) of the BL
problem is chosen for the implementation, which is derived in [1]:

∇ ·vt =0, vt =−�tK∇ p̄=−�tK∇ pw (18)

�
�Sw

�t
+∇ ·( fw(Sw)vt )=0 (19)

Here,� is the porosity,K the intrinsic permeability, �� =kr�/�� is themobility of phase �,�∈{w,n},
where kr� is the relative permeability, �� the dynamic viscosity. Sw and pw are the saturation and
the pressure of wetting phase; vt the total velocity, �t =∑� �� is the total mobility; fractional flow
function f� is denoted by f� =��/�t . Notice that the pressure equation (18) has the same elliptic
operator as in the model equation (1), hence, the MPFA L-method described in Section 2.1 can
be directly applied to the above simplified two-phase flow problem.

Both Equations (18) and (19) are only weakly coupled through the relative permeability in the
pressure equation (18). Therefore, the system can be solved sequentially by the IMplicit-Pressure-
Explicit-Saturation method (IMPES), see [1], i.e. the pressure equation (18) is first solved implicitly
using the MPFA L-method, then the saturation equation (19) is solved explicitly using the velocity
field derived from the pressure equation. For the detailed MPFA L-discretization scheme of (18),
refer to the short description in Section 2.1 and [17]. Furthermore, the pressure values obtained
from the pressure equation (18) are used to compute the total velocity for the saturation equation
by reusing the MPFA L-method, i.e. to derive the total velocity field through the flux expression
for each half cell edge as shown in (8).

For the saturation equation (19), let J={t0, t1, . . . , t M } be a partition of the time interval [0,T ]
and �tn = tn+1− tn is the time step. Based on the total velocity field derived from the pressure
equation, an upwind CCFV scheme using the TPFA method is defined for the saturation equation
over each cell �i as:

Sn+1
wi = Snwi −

�tn

�

∑
�i j

|�i j |
|�i | ( fw(Snwi )max(0,vnti j ·�i j )+ fw(Snw j )max(0,−vnti j ·�i j )) (20)
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Here, Snwi denotes the saturation of the wetting phase in the cell center of �i at time tn , the cell
boundary ��i is divided into four facets, �i j . |�i j | and |�i | denote the measure of �i j and �i ,
respectively, vnti j is the total velocity on �i j at time tn , �i j is the unit outer normal of �i j . On an
inflow facet �i j , we formally set Snw j = J (�i j ), where J (�i j ) is the Neumann boundary value on
�i j . The Courant–Friedrichs–Lewy criterion is applied to determine the time step in the simulation
since the IMPES method is only conditionally stable due to the explicit numerical scheme (20)
for the saturation equation. It should be mentioned that the numerical experiments using the TPFA
method are performed as follows: first, solve the pressure equation by the TPFA method, then
reuse the TPFA method to get the total velocity field, and finally solve the saturation equation
using the same upwind scheme as (20).

The BL problem describes an instationary displacement of a non-wetting phase by a wetting
phase in a quasi-one-dimensional, horizontal domain. Boundary and initial conditions are depicted
in Figure 27. Here, K=kI,k=10−10,I is the identity matrix. �w =�n =0.001(mPas), �=0.2 and
the nonlinear Brooks–Corey kr–Sw relation is used.

In the following, all the simulation results are given at time t=1.0×107 s. Here, the numerical
results on a very fine rectangular grid (see Figure 28 (left)) are computed as the reference solutions
for the pressure and saturation as shown in Figure 29. The discretization scheme for obtaining the
reference solutions can be either the TPFA method or the MPFA L-method since in this case the
MPFA L-method reduces to the TPFA method.

The numerical experiment using the MPFA L-method is first tested on the grid in Figure 28
(right), and is compared with the results of the TPFA method. Figures 30 and 31 show the pressure
and saturation contour for the TPFA method and the MPFA L-method, respectively. The four
graphs are the results calculated on the grid after two refinements of Figure 28 (right). Obviously,

Figure 27. Boundary and initial conditions for Buckley–Leverett problem.

Figure 28. Rectangular grid (left) and general quadrilateral grid (right, level 3).
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Figure 29. Reference solutions for pressure (left) and saturation (right).

Figure 30. Pressure contour for TPFA method (left) and MPFA L-method (right).

Figure 31. Saturation contour for TPFA method (left) and MPFA L-method (right).

the saturation for the TPFA method (see Figure 31 (left)) exhibits more smearing in comparison
with the reference solution in Figure 29 (right), and the saturation front is wrong due to the
distorted pressure shown in Figure 30 (left), which is affected by the shape of the grid. From
Figures 30 (right) and 31 (right), we can see that the MPFA L-method converges well to the
reference solutions.

Next, the grid in Figure 32 (right) is applied for the simulation, which is derived by refining
the grid in Figure 32 (left) twice. From the left coarse grid, it is observed that the grid behavior is
very bad in some local regions, where its aspect ratios are quite large. The results in Figures 33
and 34 are the pressure and saturation contour for the TPFA method and the MPFA L-method,
respectively. It is clear that the convergence of the TPFA method is completely lost in this case,
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Figure 32. General quadrilateral grid: level 2 (left), level 4 (right).

Figure 33. Pressure contour for TPFA method (left) and MPFA L-method (right).

Figure 34. Saturation contour for TPFA method (left) and MPFA L-method (right).

and the solutions are much worse than those computed on the grid in Figure 28 (right). Instead,
the MPFA L-method still works well, but compared with the test on the grid in Figure 28 (right),
the solutions here converge for a smaller grid size. That means the convergence rate of the MPFA
L-method is reduced in this case, which coincides with the observations in Section 2.2, i.e. the
convergence rate of the MPFA L-method is more sensitive to the grid regularity.

It should be mentioned that the situation of the TPFA method for both numerical examples above
cannot be improved by refining the grid since the TPFA is inconsistent to the partial differential
equation for the non-K-orthogonal grid.

5. CONCLUSIONS

This paper has presented the Dirichlet boundary influence on the MPFA L-method and the studies
on the L-method in the case of homogeneous media. A new Dirichlet boundary discretization
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called ‘full O’ is proposed for the L-method and is compared with the Dirichlet boundary handling
mentioned in [12, 17]. Numerical results of the three examples in Section 2.2 show that, in the
case of convergence, the improper implementation of Dirichlet boundary will reduce the super-
convergence rate of the L-method, especially for the normal velocity. However, compared with the
influence of the grid shape on the superconvergence behavior, the boundary effect can be neglected.
For a uniform grid, the new ‘full O’ strategy can significantly improve the superconvergence order
of the normal velocity from O(h1.5) to O(h2). For the special case of homogeneous media, the
simplification of the L-method gives an equivalent description of the criterion for the choice of
the L triangle by some geometrical information instead of by the transmissibility coefficients for
the original criterion. That is, the L triangle with smaller absolute transmissibility coefficient that
is chosen is equivalent to the L triangle with longer path along the direction of KTne is chosen.
This intuitive observation shows when the two L triangles corresponding to an entire cell edge
are chosen in combination of (T1,T3) or (T2,T4), when in a combination of (T1,T4) or (T2,T3).
Based on the above theoretical results, the reason for the big errors inside the quadrilateral grid
(see Figure 9 (left)) is well interpreted, which indicates that the superconvergence behavior of the
L-method is more sensitive to the shape of the grid compared with the O-method. The two-phase
flow results show that it is quite important to choose the proper discretization method for the
elliptic operators in the flow equation. Otherwise, a wrong pressure field causes a bad velocity
field, which gives a completely wrong result for the saturation. We also observe that the TPFA
method cannot converge to the correct solution for the general non-K-orthogonal grid even with
the refinement of the grid as mentioned in Section 1. However, the MPFA L-method overcomes
the inconsistency of the TPFA and works properly for multi-phase flow in reservoir simulation.
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